BIOSYNTHESIS OF α -SPINASTEROL IN PUMPKIN^{*}

W. SUCROW and B. RADÜCHEL

Organisch-Chemisches Institut der Technischen Universität, Berlin, Germany

(Received in Germany 23 February 1971; Received in the UK for publication 22 March 1971)

Abstract--After administration of $[3\alpha^{-3}H]$ -5 α -stigmast-7-en-3 β -ol (I) to the leaves of pumpkin plants (Cucurbita pepo L.) radioactive a-spinasterol (II) was isolated and degraded to 3β-acetoxy-5a-bisnorchol-7enaldehyde (VI) which was shown to be radiochemically pure by TLC and crystallization to constant specific radioactivity.

INTRODUCTION

DEHYDROGENATION of saturated sterol side chains at C-22.23 has been reported by several authors.¹⁻⁶ This prompted us to investigate the metabolism of 5α -stigmast-7-en-3β-ol (I) in pumpkin plants (Cucurbita pepo L.). I has recently been isolated from other Cucurbitaceae as Coccinia indica L.,7 Cucumis sativus L., and Cucumis melo L.8 All attempts to detect I in pumpkin have, however, failed so far. This may be due to a very rapid turn over of this sterol. Pumpkin plants are well suited for the examination of Δ^7 -sterol biogenesis since they contain only traces of Δ^5 -sterols. In our laboratory four sterols have been isolated from pumpkin⁹ (Chart 1): 5\arcsigmasta-7,22-dien-3B-ol (α-spinasterol, II), [24(28)Z]-5α-stigmasta-7,24(28)-dien-3β-ol (III), 5α-stigmasta-7,22,25-trien-3 β -ol (IV), and 5 α -stigmasta-7,25-dien-3 β -ol (V). The structures of III. IV, and V have been proved by synthesis.¹⁰ Administration of labelled III to pumpkin plants gave active IV and V, whereas the label of α -spinasterol (II) was rather poor.¹¹ For that reason we supposed I to be a precursor of II.

RESULTS AND DISCUSSION

 5α -Stigmast-7-en-3 β -ol was labelled by reduction of 5α -stigmast-7-en-3-one⁷ with tritiated sodium borohydride. This afforded a mixture of epimers which were separated

2,4-DINITROPHENYL HYDRAZONE		
Compound	Solvent for crystallization	Specific activity [dpm/µmole]
3β-Acetoxy-5α-bisnorchol-7-enaldehyde (VI)	petrolether petrolether petrolether petrolether petrolether benzene-cyclohexane 1:1	$5890 \pm 177 4900 \pm 147 4271 \pm 128 4263 \pm 128 4296 \pm 129 4283 + 128 4284 + 128 4285 + 1285 + 128 4285 + 1285 $
2.4-Dinitrophenyl hydrazone of VI	petrolether-10% ether petrolether-10% ether	4140 ± 124 4190 ± 126

TABLE 1. RECRYSTALLIZATION OF 3β -acetoxy- 5α -bisnorchol-7-enaldehyde and the corresponding

* Dedicated to Professor F. Bohlmann on the occasion of his 50th birthday.

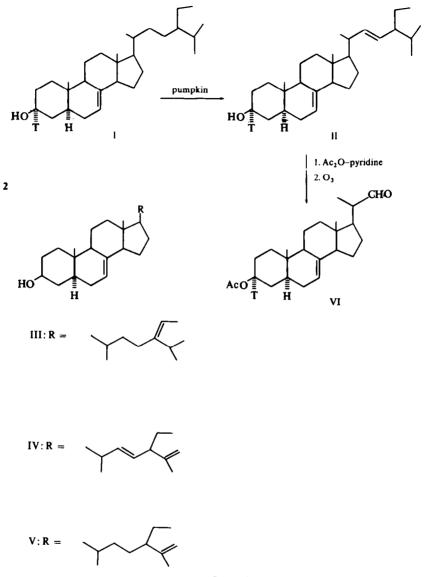


CHART 1

by chromatography. $[3\alpha^{-3}H]$ - 5α -Stigmast-7-en-3 β -ol (I) was applied to the leaves of pumpkin plants in acetone solution. The sterols were isolated by a common procedure (Experimental) and converted to the acetates which were purified by chromatography on silver nitrate-silica gel. The sterols III-V exhibited low radioactivity, whereas II was highly labelled. Since the precursor I could not be removed completely from II by chromatography and crystallisation we cleaved the side chain of II with ozone and isolated radioactive 3β -acetoxy- 5α -pregn-7-en-22-al (VI). VI could easily be purified to constant radioactivity. The preparation of the 2,4-dinitrophenyl hydrazone of VI occurred without loss of specific molar radioactivity (Table 1). Compound I is ca 0.6% incorporated into II. This result supports the assumption that dehydrogeneration of a saturated sterol side chain at C-22,23 is a common process in the biogenesis of sterols.

EXPERIMENTAL

Solvent mixture for column chromatography was light petroleum with increasing amounts of ether. Radioactivity was determined in a Beckman scintillation counter having a general efficiency of 50% for ³H, and 35% in the case of the 2.4-dinitrophenyl hydrazone.

Preparation of the radioactive precursor. 5α -Stigmast-7-en-3-one (18 mg) dissolved in THF (1 ml) was treated for 30 min with 5 mC of tritiated NaBH₄; inactive NaBH₄ (15 mg) was added and after 30 min the mixture was poured into water and extracted with ether. After evaporation the residue was purified by column chromatography on silica gel to remove the less polar 3α -hydroxy epimer. Crystallization from MeOH afforded pure I (7 mg), specific activity 4.90. 10⁸ dpm/mg. No radioactive impurities were detected by TLC in light petroleum-50% ether (R_f 0.21) or chloroform-10% acetone (R_f 0.35) using a Berthold TLC scanner.

Administration of I to pumpkin plants. $[3\alpha^{-3}H]$ - 5α -Stigmast-7-en-3 β -ol(1 mg, 4-90 × 10⁸ dpm) was administered in doses of 0-98 × 10⁸ dpm in acetone soln to the cotyledones of eighty 6-days-old pumpkin plants. which were grown from seed in a greenhouse on Knop's soln. A total of 5 such treatments were given to the plants every 2 days. Five days after the last treatment the roots were cut off and the plants (512 g) frozen in liquid N₂ and homogenized in a blender under addition of acetone. The shredded material was extracted with hot acetone in a soxhlet and the evaporated extract saponified with 600 ml of 10% (w/v) KOH in EtOH-water (95-5) for 2 hr on a steam bath. The mixture was evaporated under reduced press, water was added and the non-saponifiable material thoroughly extracted with ether. Evaporation of the extract gave a semi-solid (total activity 3.50. 10⁸ dpm). The mixture of Δ^7 -sterols was isolated by column chromatography on alumina (50 g, 10% H₂O). Fractions were analyzed by TLC using benzene-4% EtOH in which Δ^7 sterols had R_f 0-33. After acetylation of the Δ^7 -sterols (101 mg) with Ac₂O-pyridine they were separated by column chromatography on AgNO₃-silica gel. Fractions were analyzed by TLC on AgNO₃-silical gel G plates (Merck) using cyclohexane-10% diisopropyl ether. The acetates of III, IV, and V were nearly inactive after several crystallizations from methanol.

Ozonolysis of II-acetate. As the α -spinasteryl acetate fraction (2 × 10⁸ dpm, 64 mg) still contained unchanged precursor, part of it (25 mg) was cleaved by ozonolysis in methylene chloride (1 ml) with a trace of pyridine. Column chromatography of the reaction mixture on silica gel yielded VI (10 mg) which was diluted with inactive carrier (100 mg). Multiple chromatography and crystallization to constant radioactivity (Table 1) yielded pure aldehyde (18 mg), specific activity 4283 dpm/µmole. Radiochemical purity in TLC was determined by the method of Akthar *et al.*¹² in light petroleum 30% ether (R_f 0-43) or cyclohexane-20% EtOAc (R_f 0-55).

The aldehyde (17 mg) was converted to the 2,4-dinitrophenyl hydrazone. Column chromatography and crystallization from light petroleum-10% ether (Table 1) yielded pure hydrazone (14 mg), m.p. 218-220°, 4190 dpm/µmole. Radiochemical purity was proved by TLC using cyclohexane-30% EtOAc (R_f 045) or chloroform-5% acetone (R_f 051) as solvents.

Another portion of the α -spinasteryl acetate (39 mg) was saponified and oxidized with Jones reagent in acetone at 10°. As expected the resulting α -spinasten-3-one showed no radioactivity after column chromatography and crystallization from methanol. This result indicates lack of randomization.

Acknowledgements--Financial support by Deutsche Forschungsgemeinschaft and Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie is gratefully acknowledged.

REFERENCES

- ¹ R. D. Bennet and E. Heftmann, Steroids 14, 403 (1969)
- ² M. Devys, A. Alcaide and M. Barbier, Bull. Soc. chim. Biol. 50, 1751 (1968)
- ³ U. H. M. Fagerlund and D. R. Idler, Canad. J. Biochem. Physiol. 39, 505 (1961)
- ⁴ M. Akhtar, M. A. Parvez and P. F. Hunt, Biochem. J. 106, 623 (1968)
- ⁵ F. B. Mallory, R. L. Conner, J. R. Landrey and C. W. L. Iyengar, Tetrahedron Letters 6103 (1968)
- ⁶ R. Ellouz and M. Lenfant, Ibid 609, 2655 (1969), 3967 (1970)
- ⁷ W. Sucrow and A. Reimerdes, Z. Naturforsch. 23b, 42 (1968)

- ⁸ H. Terauchi, S. Takemura, Y. Kamiya and Y. Ueno, Chem. pharmac. Bull. Tokyo 18, 213 (1970)
- ⁹ W. Sucrow, Chem. Ber. 99, 3559 (1966); Tetrahedron Letters 2443 (1968)
- ¹⁰ W. Sucrow and B. Radüchel, Chem. Ber. 102, 2629 (1969);
- ^b W. Sucrow and B. Girgensohn, *Ibid.* 103, 745, 750 (1970)
- ¹¹ W. Sucrow and B. Radüchel, Phytochemistry 9, 2003 (1970)
- ¹² M. Akhtar, P. F. Hunt and M. A. Parvez, Biochem. J. 103, 621 (1967)